Gas Engies

2023

Gas Engines

Source: DEUTZ

Gas Engines / Gas Turbine

Fuel (gas) – Air mixer

Source: DEUTZ

Heat Flows of Gas Engines

Forrás:DEUTZ

Heat Balance-1

Source: Jenbacher

Fuels

- Fossil:
 - NG (CNG or LNG)
 - LPG (Liquefied Petroleum Gas)
- Renewabel gases:
 - PtG (P2G, electrolysis to produce hydrogen)
 - power-to-methane: power-to-hydrogen system+ carbon dioxide to produce methane using Sabatier reaction or biological methanation,
 - Biogas is produced by anaerobic digestion (Prof. Lezsovits), Landfill Gas, Sewage Gas,
 - Pyrolysis (Prof. Lezsovits),
 - Gasification (Prof. Lezsovits).

Different biogases:

١	Biogas	Landfill Gas I	Landfill Gas II	Sewage Gas
CH ₄	58,70%	35,80%	50,60%	61,20%
CO ₂	39,70%	32,90%	37,10%	38,50%
O ₂	1,60%	1,80%	2,60%	-
Other:	-	$H_2O + N_2$	N ₂	N ₂
-	-	29,50%	9,70%	0,20%
H ₂ S	25 ppm	-	-	1350 ppm

Source: Jenbacher

Landfill Gas

DAVID A. C. MANNING:Carbonates and oxalates in sediments and landfill: monitors of death and decay in natural and artificial systems

Sewage Gas

www.clarke-energy.com

Gasification

- The *pyrolysis* process occurs at around 200-300°C. Volatiles are released and char is produced,
- The gasification process occurs as the char reacts

C+H₂O \rightarrow H₂ + CO CO+H₂O $<\rightarrow$ CO₂ + H₂ (water gas shift reaction)

Fig. 1-2. Schematic view of the World War II, Imbert gasifier.

Dry comp.:

Components	anaerob (wood)gas	producer gas	synthesis gas	Natural Gas
CH ₄ [%]	8	5	3	98
CO ₂ [%]	20	5	17	0,1
CO [%]	20	20	40	-
H ₂ [%]	38	20	40	-
N ₂ [%]	14	50	0	1-2
Hi [MJ/m3]	9,5	6,48	10,45	35,72

- anaerob (wood)gas : oxygen-free gasification,
- aerob gases:
 - producer gas : gasification with air
 - synthesis gas : gasification with controled O_2 and Steam

Cogeneration

Source: Jenbacher

Versatility of energy conversation (power, heat and cold)

Source: DEUTZ

Electrical, total Efficiency and power-to-heat ratio

Source:DEUTZ

Fuel – Air mixture formation

Source: DEUTZ

Dual fuel type CI Engines

Dual fuel engine systems (different biogas engines)

Benefits of the Dual Fuel Engines

- High Compression ratio
- Qualitative power control
- Fuel Flexible

Cogeneration

Source: Jenbacher

Gasengine Cogeneration

Utilisation:

- Low temperature heating purposes (heating of flats or buildings).
- High Electrical power costs are generate good returns, better than a boiler.
- Major industrial facilities, primarily in the electricity supply to the primary heat recovery while at the same time.

Annual Temperature Fluctuations (Hungary)

Heating Demand

Heating Demand as a Function Of External Temperature

Heating Demand

Annual Heating Demand

Cogeneration

Source: Jenbacher

Cooling and Heating demand

Trigeneration

Source: Jenbacher

Absorption cooler

Source: https://iitbuildingscience.wordpress.com/2013/10/07/absorption-cooling/

Advantages through the combination of cogeneration with absorption chillers

- increase of the module operation time through additional utilization of exhaust heat on summer
- decrease of the connected electrical load and hence reduction of energy costs.

Parameters of the Gasous Fuels

- Heating Value
- Metan Number
- Ignition Limits
- Wobbe number

Parameters of the Gasous Fuels

Fuel	Denomi- nation; composition % by vol.	M kg/ kmol	V _{mF} m _n ²/ kmol	₽F Density kg/ m ³ n	H _o kWh/ kg	H _u kWh/ kg	H _u kWh/ m _n ³	L _{min} m ^a nL/ m ³ F	V _{of.} m ³ / m ³ F	V _{otr.} m ³ / m ³ F	QA Density/ E)h. gas ∳g/m ³ n	lgnitio λ _u	n limits λ _o	MZ	λ ₅	V _{5tr.} m ^a n 5%/ m ³ n F	g(CO ₂) kg(CO ₂)/ kWh F
Ha	Hydrogen	2016	22.43	0.0899	39.39	33.33	2 996	2379	2.878	1.88	$(1, 1_{\mathbb{Z}})$	9.83	0.14	0	1 247	2467	0
C	Carbon	12.01	(22.41)	(0.536)	287	2.87	(4.88)	4 762	4 756	4 756	1221	-		_	1.312		0.402
S	Sulphur	32.06	(22,41)	(1.431)	2.57	2.57	(3.68)	4.762	4.739	4,739	2244	22229	10.200	1412			0
CH₄	Methane	16.042	22.38	0.717	15.42	13.89	9.971	9.537	10.53	8.53	.234	1.99	0.59	100	1.280	11.195	0.198
C ₂ H ₄	Ethylene	28.052	22.25	1.261	13.97	13.10	16.521	14.39	15.38	13.37	.287	2.25	0.14	15	1.290	17.548	0.239
C ₂ H ₆	Ethane	30.068	22.17	1.356	14.41	13.19	17.89	16.85	18.35	15.32	.256	1.92	0.36	43.7	1.284	20.107	0.221
C ₃ H ₆	Propylene	42.078	21.973	1.915	13.59	12.72	24.35	21.86	23.37	20.31	.287	2.03	0.37	18.6	1.290	26.657	0.247
C ₃ H ₈	Propane	44.094	22.01	2.003	13.99	12.88	26.00	24.24	26.26	22.19	.265	1.92	0.39	33	1.286	29.122	0.228
C ₄ H ₁₀	Butane	58.12	21.50	2.703	13.76	12.71	34.34	32.26	34.84	29.63	.270	2.04	0.33	10	1.287	38.893	0.230
H ₂ S (burnt to SO ₂)	Hydrogen sulphide	34.082	22.15	1.538		4.23	6.52	7.23	7.71	7.00	.407	3.06	0.17	5	1.290	8.791	0
со	Carbon monoxide	28.01	22.41	1.250	2.81	2.81	3.51	2.381	2.875	2.875	1.502	2.94	0.14	75	1.377	3.775	0.563
CO ₂	Carb. dioxide	44.01	22.26	1.9771	3.4 A)			$ \dot{z} = \dot{z} $	10 - 8 6	8-1-1 I	4-35		(1, -1)	144-142	33232	107-04	認知者に知
Nat. gas	$\begin{array}{c} CH_4 = 88.5\\ C_2H_6 = 4.7\\ C_3H_8 = 1.6\\ C_4H_{10} = 0.2\\ N_2 = 5.0 \end{array}$	(17.83)	(22.29)	0.798	11.05	12.68	10.14	9.684	10.72	8.73	.238	1.90	0.59	80–90	1.282	11.462	0.201
Sew. gas	$CH_4 = 65$ $CO_2 = 35$			1.158		5.65	6.5	6.20	7.20	5.89	1.271	1.94	0.54	134	1.297	7.736	0.303
Landf. gas	$CH_4 = 50$ $CO_2 = 40$ $N_2 = 10$			1.274		3.94	4.77	4.77	5.77	4.77	.286	1.90	0.49	136	1.312	6.254	0.355
Diesel fuel	C=86%bywt. H=14%bywt.			-		11.6		11.25	12.0	10.5	.295	-	-		1.2	13.4 per kg	0.264
Basic data acc. to [2] Ignition limits λ_{u} , λ_{o} converted from $z = 100/(1 + \lambda + L_{min})$, for gas mixtures acc. to [3] and [7]. M molar mass Lmin min. air requirements MZ methane number VmF molar volume Vof. wet exhaust gas volume at $\lambda = 1$ λ_5 excess-air factor at 5% O ₂ in dry exhaust gas Ho gross calorific value Votr. dry exhaust gas volume at $\lambda = 1$ V5tr. dry exhaust volume, related to 5% O ₂ = vital reference quantity for emissions Hu net calorific value QA exhaust gas density g(CO ₂) fuel-specific CO ₂ formation in the exhaust gas F and index F related to fuel, i.e., gaseous fuel related to fuel, i.e., gaseous fuel																	

Fig. 16 Fuel characteristic values

Source: DEUTZ

Parameters of the Gasous Fuels

Fuel	Denomi- nation; composition % by vol.	M kg/ kmol	V _{mF} m³/ kmol	QF Density kg/ m ³ _n	H _o kWh/ kg	H _u kWh/ kg	H _u kWh/ m _n ³	L _{min} m ^a nL/ m ^a nF	V _{of.} m ³ / m ³ _n F	V _{otr.} m _n ²/ m _n ³ F	QA Density Exh. gas kg/mậ	Ignition / λ _u s	n limits λ _o	N NZ		λ ₅	V _{5tr.} m ² n 5%/ m ³ n F	g(CO ₂) kg(CO ₂)/ kWh F
Ho	Hydrogen	2.016	22.43	0.0899	39.39	33.33	2.996	2.379	2.878	1.88	122	9.83	0.14	0		1.247	2.467	0
c	Carbon	12.01	(22.41)	(0.536)	2.87	2.87	(4.88)	4.762	4.756	4.756	1222					1.312		0.402
S	Sulphur	32.06	(22.41)	(1.431)	2.57	2.57	(3.68)	4.762	4.739	4.739	222	120200					1912-191	0
CH4	Methane	16.042	22.38	0.717	15.42	13.89	9.971	9.537	10.53	8.53	1.234	1.99	0.59	100		1.280	11.195	0.198
C ₂ H ₄	Ethylene	28.052	22.25	1.261	13.97	13.10	16.521	14.39	15.38	13.37	1.287	2.25	0.14	5		1.290	17.548	0.239
C ₂ H ₆	Ethane	30.068	22.17	1.356	14,41	13.19	17.89	16.85	18.35	15.32	1.256	1.92	0.36	48.		1.284	20.107	0.221
C ₃ H ₆	Propylene	42.078	21.973	1.915	13.59	12.72	24.35	21.86	23.37	20.31	1.287	2.03	0.37	18.6	3	1.290	26.657	0.247
C ₃ H ₈	Propane	44.094	22.01	2.003	13.99	12.88	26.00	24.24	26.26	22.19	1.265	1.92	0.39	33		1.286	29.122	0.228
C ₄ H ₁₀	Butane	58.12	21.50	2.703	13.76	12.71	34.34	32.26	34.84	29.63	1.270	2.04	0.33	0		1.287	38.893	0.230
H ₂ S (burnt to SO ₂)	Hydrogen sulphide	34.082	22.15	1.538		4.23	6.52	7.23	7.71	7.00	1.407	3.06	0.17	F		1.290	8.791	0
со	Carbon monoxide	28.01	22.41	1.250	2.81	2.81	3.51	2.381	2.875	2.875	1.502	2.94	0.14	75		1.377	3.775	0.563
CO ₂	Carb. dioxide	44.01	22.26	1.9771	1 A	12:223		133-2-23	\$2,233	你走主你 的	的生产	北北北	33433	14 <u>-</u>		144	11.12.2.2	道法主義法
Nat. gas	$CH_4 = 88.5$ $C_2H_6 = 4.7$ $C_3H_8 = 1.6$ $C_4H_{10} = 0.2$ $N_2 = 5.0$	(17.83)	(22.29)	0.798	11.05	12.68	10.14	9.684	10.72	8.73	1.238	1.90	0.59	80-9	90	1.282	11.462	0.201
Sew. gas	$CH_4 = 65$ $CO_2 = 35$			1.158		5.65	6.5	6.20	7.20	5.89	1.271	1.94	0.54	134		1.297	7.736	0.303
Landf. gas	$CH_4 = 50$ $CO_2 = 40$ $N_2 = 10$			1.274		3.94	4.77	4.77	5.77	4.77	1.286	1.90	0.49	136	i	1.312	6.254	0.355
Diesel fuel	C=86%bywt. H=14%bywt.			-		11.6		11.25	12.0	10.5	1.295		89233 1935-193			1.2	13.4 per kg	0.264
Basic data acc. to [2] Ignition limits λ_u , λ_o converted from $z = 100/(1 + \lambda + L_{min})$, for gas mixtures acc. to [3] and [7]. M molar mass Lmin min. air requirements MZ methane number VmF molar volume $V_{of.}$ wet exhaust gas volume at $\lambda = 1$ λ_5 excess-air factor at 5% O ₂ in dry exhaust gas Ho gross calorific value Votr. dry exhaust gas volume at $\lambda = 1$ $V_{5tr.}$ dry exhaust volume, related to 5% O ₂ = vital reference quantity for emissions Hu net calorific value Q_A exhaust gas density $g(CO_2)$ fuel-specific CO ₂ formation in the exhaust gas F and index F related to fuel, i.e., gaseous fuel related to fuel, i.e., gaseous fuel																		

Fig. 16 Fuel characteristic values

Source: DEUTZ

The Octane Number (MON, RON)

The Octane Number is numerical representation of the antiknock properties of (motor) fuel, compared with a standard reference fuel, such as isooctane, which has an octane number of 100

MON, RON

n-heptane 0 H₂ 0

MN,

iso-octane 100 CH₄ 100

- The most common type of octane rating worldwide is the **Research Octane Number** (**RON**). RON is determined by running the fuel in a test engine with a variable compression ratio under controlled conditions, and comparing the results with those for mixtures of iso-octane and n-heptane.
- There is another type of octane rating, called **Motor Octane Number** (**MON**) or the aviation lean octane rating, which is a better measure of how the fuel behaves when under load.

Theoretical combustion process

- $1 \text{ CH}_4 + 2(\text{O}_2 + \frac{79}{21} \text{ N}_2) \rightarrow 1 \text{ CO}_2 + 2 \text{ H}_2\text{O} + 2(\frac{79}{21} \text{ N}_2)$
- Theoretical flue gas composition::

On a wet basis: $9,5\% CO_2 + 19,0\% H_2O + 71,5\% N_2$ On a dry basis: $11,7\% CO_2 + 0\% H_2O + 88,3\% N_2$

- $1 H_2 + \frac{1}{2} (O_2 + \frac{79}{21} N_2) \rightarrow 0 CO_2 + 1 H_2O + \frac{1}{2} (\frac{79}{21} N_2)$
- Theoretical flue gas composition::

On a wet basis: $0\% CO_2 + 34,71\% H_2O + 65,3\% N_2$ On a dry basis: $0\% CO_2 + 0\% H_2O + 100\% N_2$

Adiabatic flame temperature

The adiabatic flame temperature is of great importance for the course of combustion and the occurrence of chemical reactions, it is also crucial for the formation of emissions (e.g. NOx).

Adiabatic flame temperature as a function of air excess in case of different H2 mixing (GRI 3.0 mechanism, To= 323 K, Po= 0.1 Mpa)

Laminar flame propagation velocity

The laminar flame speed is a parameter that characterizes the speed of combustion. The laminar flame speed increases continuously with the addition of hydrogen.

For CH_4 , the maximum is between 0.9-1 by mixing H_2 , the Maximum shifts to a rich range

A lamináris lángterjedési sebesség függvényében különböző H2 bekeverés esetén (GRI 3.0 mechanizmus, To= 323 K, Po= 0,1 Mpa)

Lower and upper ignition limit (λ_l, λ_h)

Fuels between the lower and upper ignition limits can be ignited, and mixtures outside the limits cannot be ignited.

Gyulladási határok metán-hidrogén keverékek esetén, különböző mérési módszerekkel meghatározva

LHV value and heat input

At a constant excess of air, the fuel flow rate increased by mixing H2, but performance and efficiency decreased

Acceleration of combustion > combustion start (pre-ignition) optimization

Combustion start (pre-ignition) optimization

Average combustion chamber pressure results I=1.2[-] for excess air as a function of crankshaft angle for different hydrogen blendings

LHV value and heat input

At a constant excess of air, the fuel flow rate increased by mixing H2, but performance and efficiency decreased

Acceleration of combustion > combustion start (pre-ignition) optimization

Emissions

Source: DEUTZ

Wobbe index

• The Wobbe index is a measurement of the degree to which fuels can be interchanged.

Wobbe Index = Wo =
$$\frac{LHV}{\sqrt{d}} \left[\frac{kJ}{kg}\right]$$

LHV: lower heating value d: Relative density of the fuel compared with air

$$d = \frac{\rho_{mix.}}{\rho_{air}}$$

The Wobbe number characterizes the interchangeability of (fuel) gases: if another type of gas is to be used on a gas-consuming appliance running with a given type of gas (e.g. H2 mixing), the amount of energy released will only be the same (interchangeable) if their Wobbe numbers are the same MSZ 1648:2000: 45.66-54.78 MJ/m3 (2H gases)

	Higher M	$I = H_s($	(HHV)		
		7 o,i —	\sqrt{d}		
Parameter	Dimension	H2	CH4	NG	
compression factor(@15 °C, Pn)	Z [-]	1,001	0,998	0,998	
Density (@15 °C, Pn)	kg/m ³	0,085	0,678	0,730	
Relative density(@15 °C, Pn)	-	0,070	0,554	0,596	
Theoretical combustion air demand[V/V %]	-	2,390	9,700	9,820	
LHV 15/15°C	MJ/m ³	10,22	34,02	35,39	
Lower Wobbe number	MJ/m ³	38,75	45,70	45,84	

When hydrogen is mixed into NG, the calorific value (LHV) and Wobbe number of the mixture are removed from the prescribed ranges,

However, how much mixing depends on the gas into which the hydrogen is mixed (LNG, interconnector network, etc.).

For gas nozzle burners, in which the density of the exhaust gas varies negligibly with a small change in pressure, the Bernoulli equation for

incompressible media can be used: $p_0 + \frac{w_0^2 \rho_0}{2} = p_1 + \frac{w_1^2 \rho_1}{2}$

From here gas outflow rate: $w_1 =$

$$= \sqrt{\frac{2(p_0 - p_1)}{\rho_1}}$$

If the pressure difference between p_0 before and after the nozzle is constant (25 mbar), the density of the fuels decreases (e.g. $\rho_{H2} = 0.090 \text{ kg/m}^3$, $\rho_{CH4} = 0.718 \text{ kg/m}^3 (15 \text{ }^\circ\text{C}; p_n)$) the gas outflow rate increases, of course many losses are not taken into account here (viscosity, flow rabies, etc.).

$$\dot{V}_{fuel} = \sigma \frac{D^2 \pi}{4} \sqrt{\frac{2\Delta p}{\rho_{fuel}}} \left[\frac{Nm^3}{s}\right]$$

p_1: ambient (Primary air)
pressure
p_0: Fuel pressure

Impact of Hydrogen/Natural Gas Blends on Partially Premixed Combustion Equipment: NOx Emission and Operational Performance, February 2022, <u>Energies</u> 15(5):1706

The heat induced by the fuel can also be written in the following equation:

$$\dot{Q}_{in} = \sigma \frac{D^2 \pi}{4} \sqrt{\frac{2\Delta p}{\rho_{air}}} \frac{LHV}{\sqrt{\rho_{fuel}}} = \sigma \frac{D^2 \pi}{4} \sqrt{\frac{2\Delta p}{\rho_{air}}} WI_{i,fuel}$$

 σ [-] Nozzle constriction factor, D [m] Nozzle diameter,

The Wobbe index is therefore an important parameter

When mixing 20 V/V% H2 into natural gas, the calorific value decreases to 86%, but the square root of density increases to 1.1%, so the theoretical flow rate increases, so the theoretically transferable heat decreases to only 95%!

A number of losses were not taken into account (viscosity, flow rabies, etc.)